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ABSTRACT
In this paper we present a new framework for correcting par-
tially out-of-focus biological images. To evaluate depth vari-
ation, our method extracts similar objects of interest over the
image. The depth is based on a defocus value computation for
each salient point. We use an iterative algorithm to convert
each defocus value into a Gaussian standard deviation. These
measures are then interpolated over the whole image using
thin plate spline transform, providing a regularized map. This
array provides, for every spatial position, an evaluation of the
standard deviation used in the final step for an inhomogeneous
deconvolution based on the Richardson-Lucy algorithm. Ex-
periments on real and simulated images validate the accuracy
of such a method compare to traditional shift invariant decon-
volution approaches.

Index Terms— Deconvolution, microscopy, image pro-
cessing, image restoration, image enhancement.

1. INTRODUCTION

The standard formulation for a shift invariant blurring phe-
nomenon for an optical system is describe by the following
equation :

g(x, y) = P
(
(h ∗ f)(x, y)

)
+ η. (1)

Here, h(x, y) is the blur function, f(x, y) the original image,
P the Poisson distribution, η is typically the acquisition noise
that follows a Gaussian distribution, g(x, y) the observed im-
age and ∗ the convolution operator. In this paper, the blur
function is considered as spatially variant. Then, equation (1)
takes the form:

g(x, y) = P
(
(h(i,j) ∗ f)(x, y)

)
+ η. (2)

Now, the function h can change along the image. The out-of-
focus blurring process is modeled by a symmetrical Gaussian
convolution ∼ N (0, σi,j). For more explanation concerning
the physical foundations of this assumption, the reader can
refer to [1, 2]. We need to estimate the standard deviation map
σ̂i,j of the Gaussian function h(i,j)(x, y) from information
contained in the image g(x, y). 2D image deconvolution is an

(a) (b)

Fig. 1. Schematic representation of the defocusing phe-
nomenon. In figure (a) the biological matter is well located
in the focal plane. In figure (b) the biological objects are
out-of-focus, projecting a corrupted image in the image
plane.

especially ill-posed problem, particularly if we consider that
the Point Spread Function (PSF) may vary over the image. To
overcome this drawback we have to constrain the solution by
including additional assumptions to the process [3, 4, 5].
Our first assumption consists in adding a smoothness con-

straint to the solution. It is a very common regularity con-
straint [5] and is realized here by using a thinplate spline in-
terpolation between relevant estimated σ̂i,j(x, y) values.
We also assume that a same biological object is spread

over the image. This situation is typical in biological screen-
ing image context (see figures 1, 6, 2 & 5). Of course these
objects may be subject to different blurs due to their depth
(see figure 1). We use these entities as references in order to
determinate the focus measures over the image.
In this paper we split the framework in three distinct parts:

(i)the defocusing trend quantification, (ii) the Gaussian ker-
nels estimation and (iii) the deconvolution process.

2. DEFOCUSING QUANTIFICATION

The first step of our framework consists in estimating the
amount of blur present in the image. In the defocus estimation
literature, a recent paper [6] compares several focus measures
and shows that Sum-Modified-Laplacian (SML) provides bet-
ter performances1. Thus we base our blur estimation upon the

1http://homepage.ntu.edu.tw/ p94922001/FocusStudy.htm
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use of this operator applied on a small neighborhood N . It is
described as follows [1]:

F (i, j) =
i+N∑

x=i−N

j+N∑
y=j−N

LMod(x, y), (3)

where

LMod(x, y) = |2g(x, y) − g(x − Δx, y) − g(x + Δx, y)|

+ |2g(x, y) − g(x, y − Δy) − g(x, y + Δy)|.

The figure 2(b) displays the SML map with N = 3. SML
measures high frequencies (details) and, as we can see in fig-
ure 2(b), the object edges themselves affect the relevance of
this estimation. To overcome this drawback, we propose to
calculate the SML criterion only on similar objects as defined
in section 1.
In many cases, and after a Gaussian filtering process, en-

tities in biological images can be considered as an extrema in
a topographic sense. Wilson et al. in [7] differentiate many
topographic classes to the mean H and Gaussian K curva-
tures (rotational invariant) of the surface. Using this detec-
tion method we extract the local maxima by defining dmin

as the minimum distance between two detected points. dmin

is directly related to the number of extracted points Nsalient.
The choice of this distance depends of the number of bio-
logical objects present in the image. Nsalient must be lower
than the cardinal of biological objects to avoid false detection.
The figure 2(a) shows the result of a typical relevant detection
(red crosses represent the list Fsalient of salient points, with
#Fsalient = Nsalient).

3. SHIFT VARIANT BLUR ESTIMATION

We consider that the highest value of SML gives us the refer-
ence focus in the image. At this position the standard devia-
tion σ0 of the PSF is given by an a priori knowledge of the
user, depending of the optical system considered.
Due to the non linearity of SML and the complexity of the

images, it is not obvious to find a relation, or function, ϕ | σ =
ϕ(Fsalient) between the SML values and σ (see figure 3).
Thus, to estimate for each SML value the corresponding σ̂

we apply the algorithm 1.
We compute the SML value of the reference object iter-

atively convolved by ε. This resulting value is compared to
all the remaining SML values of the Fsalient list. If a value
matches, the considered point is removed from the list and the
corresponding σ̂ is assigned (see figures 3(a)).
The out of focus phenomenon is assumed to be smooth

(without discontinuities) consequently we can apply a spline
thin plate interpolation in order to reconstruct the σ̂i,j map
for any points of the image. The result of this interpolation
can be seen in figure 4(c).

Algorithm 1 from SML to standard deviation
1: σ ⇐ σ0

2: Fmax ⇐ max(List[Fsalient])
3: while List[Fsalient] �= ∅ do
4: Iσ ⇐ hσ ∗ I(xFmax

; yFmax
)

5: Fσ ⇐ ΔIσ(xFmin
; yFmin

)
6: for i = 1 to �(List[Fsalient]) do
7: if Fi ≥ Fσ then
8: Remove Fi from List[Fsalient]
9: Add Iσ to List[Isalient]
10: end if
11: end for
12: σ ⇐ σ + ε

13: end while

(a) (b)

Fig. 2. Points of interest and associated SML values rep-
resented respectively on: (a) the natural image and (b) the
corresponding SML map.

4. INHOMOGENEOUS DECONVOLUTION

Our images are degraded by out-of-focus blur and, in optical
microscopy, are subject to Poisson noise (see equation (2)).
Among deconvolution algorithms existing in the literature,
the Richardson-Lucy [8] which computes a maximum like-
lihood estimation adapted to Poisson statistics, is particularly
well suited for our aim. It leads to minimize the following
functional [9]:

E(f) =

∫∫
[(h ∗ f)(x, y) − g(x, y) log(h ∗ f)(x, y)]dxdy.

This minimization process, using the multiplicative algo-
rithm version, can be written as:

fk+1(x, y) = fk(x, y)

[
h(x, y) ∗

g(x, y)

(h ∗ fk)(x, y)

]
,

when h(x, y) is a symmetric Gaussian kernel. The con-
stant convolution kernel h(x, y) can be easily substituted by a
space variant one, leading to:

fk+1(x, y) = fk(x, y)

[
h(i,j)(x, y) ∗

g(x, y)

(h(i,j) ∗ fk)(x, y)

]
.
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(a) (b)

(c)

Fig. 3. Three different representations of the σ̂i,j values:
(a) the numerical values attached to each point of interest,
(b) spatially regular superimposed of the isotropic kernel
of radius σ̂i,j and (c) the final σ̂i,j map computed using
the thinplate interpolation.

This inhomogeneous deconvolution is driven by the inter-
polated map of σ̂i,j (see figure 3(c)). The figure 3(b) illus-
trates the Gaussian standard deviation by drawing some cir-
cles of radius r = σ̂i,j .

5. RESULTS

Validation of our method is a non obvious task since usually,
for real images, we don’t possess ground truth. Despite this,
for the first evaluation process, we simulate partially out-of-
focus images by inhomogeneously convolve natural acquisi-
tions. The σi,j map is a random coefficients 2D Legendre or-
thogonal polynomial. We then, compute the σ̂i,j for different
kind of biological images (red blood cells, parasites. . . ). The
results are displayed on figure 6 and 5. Whatever the assay is,
the estimated standard deviation maps respect the trend and
the dynamic of the original one.
We also propose a result based on the comparison between

our algorithm and the traditional homogeneous Richardson-
Lucy deconvolution for two different h(x, y) (see second and
third row of the figure 4) for a natural image. Thus, as ex-
pected, the under estimation of the kernel standard deviation
leads to a very weak enhancement of the image (see figures 4
(a) & (b) second row). In the other hand, the over estimation
considerably damages the image (see figures 4 (b) & (c) third
row). Using our framework allows an accurate deconvolution
whatever the spatial position is (see figure 4 last row).

Fig. 4. This figure displays an image and three selected
regions of interest. Top: Corrupted image. Second row:
Result of homogeneous deconvolution with σ = 1. Third
row: Result of homogeneous deconvolution with σ = 3.2.
Bottom: Our inhomogeneous deconvolution using σ̂i,j

(see figure 3).

6. CONCLUSION AND FUTUREWORKS

This paper presents a 2D inhomogeneous deconvolution algo-
rithm using jointly a measure of the sharpness (blur amount)
on detected salient points and also a spatial variant deconvo-
lution based on Richardson Lucy. We apply the algorithm on
simulated images and verify the well founded of our assump-
tions. Actually, the values obtained are very close from the
ground truth and allow an accurate deconvolution. On natural
image, we qualitatively demonstrate that inhomogeneous de-
convolution outperforms the standard one.
Nowadays, we are working on the detection part to provide
an extended version of this algorithm in order to deconvolve
images containing many kind of objects.
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Fig. 5. (a) focused image. (b) Synthetic generated σ(x, y)
map of the Gaussian function standard deviation. (c) In-
homogeneous convolution result. (e) SML values for the
detected point of interest extract from the (d) SML map.
(f) Thin plate interpolated map σ̃(x, y). (g) Inhomoge-
neous deconvolution of (c) based on the (f) map.

8. REFERENCES

[1] S.K. Nayar and Y. Nakagawa, “Shape from focus,” IEEE
Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 16, no. 8, pp. 824–831, August 1994.

[2] F. Rooms, M.Ronse, A. Pizurica, and W. Philips, “Psf
estimation with applications in autofocus and image
restoration,” in 3rd IEEE Benelux Signal Processing Sym-
posium, 2002.

[3] T. R. Lauer, “Deconvolution with a spatially-variant psf,”
in Proceedings of the SPIE Astronomical Data Analysis
II, 2002, pp. 167–173.

[4] L. Bar, N.A. Sochen, and N. Kiryati, “Restoration of im-
ages with piecewise space-variant blur,” in Scale Space
and Variational Methods in Computer Vision (SSVM’07),
2007, pp. 533–544.

[5] M. Blume, D. Zikic, W. Wein, and N. Navab, “A new
general method for blind shift-variant deconvolution of
biomedical images,” in Proceedings of the 10th con-
ference on Medical Image Computing and Computer-
Assisted Interventation (MICCAI’07), 2007, pp. 743–
750.

Fig. 6. Estimated σ̂i,j maps of 4 artificially corrupted im-
ages using the same σi,j for the homogeneous convolution.
Whatever the biological assay is, the results are relevant
and thus allow an accurate deconvolution process.

[6] W. Huang and Z. Jing, “Evaluation of focus measures
in multi-focus image fusion,” Pattern recognition letters,
vol. 28, pp. 493–500, 2007.

[7] R. C. Wilson and E.R. Hancock, “Consistent topographic
surface labelling,” Pattern Recognition Letters, vol. 32,
pp. 1211–1223, 1999.

[8] W.H. Richardson, “Bayesian-based iterative method of
image restoration,” Journal of the Optical Society of
America, vol. 62, pp. 55–59, 1972.

[9] N. Dey, L. Blanc-Fraud, C. Zimmer, Z. Kam, P. Roux,
J.C. Olivo-Marin, and J. Zerubia, “Richardson-lucy algo-
rithm with total variation regularization for 3d confocal
microscope deconvolution,” Microscopy Research Tech-
nique, vol. 69, pp. 260–266, 2006.

747


